万级无尘车间尘埃粒子,手持式空气尘埃粒子计数器

作者: www.szchinaway.com 时间:2019-10-14 浏览:
室内空气质量检测仪|压缩空气质量检测仪|空气质量检测仪价格|空气质量检测仪品牌|空气质量检测仪使用|室内空气质量检测仪价格|空气质量检测仪 品牌|空气质量检测仪使用方法|空气质量环境检测仪|甲醛空气质量检测仪|空气质量检测仪哪个好|智能空气质量检测仪
 
洁净空调系统为了满足室内洁净度要求,送风量大,造成系统的输配能耗高,尤其是对于净化级别高的系统,这种情况越发严重。开发一种既能满足净化要求,同时又能降低系统运行能耗的洁净空调系统是业界一直研究的热点问题。对辐流洁净室气流组织和污染物分布进行了数值模拟,并在动态条件下对辐流洁净室进行了实验研究,揭示了矢流洁净室内气流的流动特性和污染物的分布规律;魏学孟依据对矢流洁净室的理论分析、实验研究及数据值模拟结果,总结出矢流洁净室的最佳设计参数;李岩对辐流洁净室应用于洁净病房的气流组织进行研究,用 Airpak 商业软件包对辐流洁净病房在空态和静态下进行流场分布模拟,并通过实验测试了动态条件下的污染物浓度场;常茹等采用数值模拟和模型实验相结合的方法对辐流洁净病房内的气流流型进行了研究;周玉岩等对辐流洁净室风速测试与气流形态进行分析,并对辐流洁净室全区域风速变化情况进行测试,探讨其在空态下风速检测的具体方法;石家庄奥祥医药工程有限公司的科研团队将辐流洁净室应用于公司的生产车间。综合以上的研究成果,辐流洁净室的研究取得了一定的进展。尤其是对辐流洁净室空态下的气流组织特征,设计参数,涡流的位置,浓度场分布模型有了深入的研究,给辐流洁净室带来了很好的研究基础。本文针对辐流洁净室在电子工业厂房动态条件下的气流组织和节能特性进行了数值模拟。1 数值模拟1.1 物理模型本文采用 Airpak 数值模拟软件分别对辐流洁净室和乱流洁净室的气流组织和污染物浓度场进行模拟,根据实验条件,模拟对象为电子工业厂房,洁净厂房的洁净度要求 ISO 6 级。按照与实际大空间厂房长度、宽度、高度 3:2:1 的比例,将厂房洁净生产车间模型设置为 7.05m×4.33m×2.6m(长×宽×高)。人数及操作台设置:根据生产车间模型的面积,设计工作人数为 4 人。综上所述,本文根据 ISO 6 级洁净室设计要求,设置辐流洁净室动态模拟条件:(1)送回风设置送风口模型采用风口动量模型,在房间顶棚布置 4 个高效过滤器,外布扇形扩散孔板,4 个回风口布置在对面侧墙下部,与送风口呈对角线布置。房间顶棚安装日光灯 6 组。(2)室内设施及人员布置操作台 1 台(5m×1m×0.75m)垂直辐流送风口布置,工作台布置 4 个操作工人,平均分布在工作台两侧。(3)尘源设置空气洁净度级别的含尘浓度是在工作人员进行正常操作时测得的数据,所以代表洁净度级别的空气含尘浓度应是工作状态即动态下的数据。由于洁净厂房室内发尘主要由人员产生,设备产尘根据不同的生产工艺会有较大的区别,故本次模拟采用简化尘源的方式,即只设置人体产尘。根据烟气含尘浓度的简化计算法,烟气的含尘浓度估算范围为14.7 g/m³ ~ 61.3 g/m³,本文取 50g/m³。对于乱流洁净室,在顶棚均匀布置 6 个高效过滤器送风口。其余均与辐流洁净室相同。辐流洁净室与乱流洁净室模型图如图 1 和图 2 所示。1.2 数学模型本文采用标准 K-ε 两方程模型,湍流模型简化和假设如下:(1)室内气流为不可压缩常物性牛顿流体,稳态流动,且满足 Bussinesp 近似(密度变化不是很大的变密度流动)。(2)考虑辐射换热,忽略质量力的作用。(3)为减少模型网格的数目,节省运行时间,可将工艺设备简化为具有相同散热量的小方块。2 模拟结果及数值分析ISO6 级洁净室为了满足洁净度要求,设计换气次数为 50 次/h~60 次/h,本文对辐流洁净室和乱流洁净室分别采用 50 次/h 和 60 次/h 换气次数进行了数值模拟,并选取了 Y=1.4 m(洁净室立面)和Z=0.8m、Z=1.3 m(水平面)速度场和污染物浓度场进行对比分析。2.1 辐流洁净室模拟结果2.1.1 速度场从图3对Y=1.4m洁净室立面速度场矢量图可以看出,整个断面的气流流型从送风口到回风口成斜推的效果,符合辐流洁净室的气流组织规律。在工作台和顶棚附近气流的方向受到影响,但影响区域不大,并不影响整体气流组织特性。最大速度出现在送风口附近,中间的速度较小,房间下部(靠近回风口区域)速度增大。图 4 和图 5 为 Z=0.8m 和 Z=1.3m 洁净室工作区域水平面的气流速度场,与 Y=1.3m 立面图的气流组织特性相似,在两个工作面上,气流呈送风口向回风口的方向流动,在经过工作台表面时,气流发生扰动,但随后工作台污染气流能随着送风气流的方向流动,房间两侧的气流速度明显大于中部速度。对比 Z=1.3m 和 Z=0.8m 两个平面的速度场,Z=1.3m 平面速度值高于 Z=0.8m 的速度值,速度平均值分别为 0.03 m/s 和 0.085 m/s,且在工作台位置气流受到扰动的区域更小一些,其原因在于工作台的高度为 1m,其下方 Z=0.8m 受到的影响明显大于其上方的 Z=1.3m 平面。2.1.2 污染物浓度场图 6 至图 8,在 Y=1.4m 的洁净室立面和 Z=1.3m和 Z=0.8m 两个水平面上,污染物浓度场分布规律是相似的,污染物随着气流呈现正向扇形扩散,不会产生气流的逆向扩散,表明辐流能够较好地将污染物从回风口排出。在 Z=1.3m 平面上,污染物浓度在 0.0002PPMV 9 .~0.0006PPMV 的较低范围,平均值为 0.0004PPMV,Z=0.8m 平面上的污染物平均浓度比 Z=1.3m 平面增加了 25%,为 0.0005PPMV。说明污染物浓度场与速度场的气流分布规律相关,在速度值越大、气流流型受到扰动小的区域,洁净度越高。2.2 乱流洁净室模拟结果2.2.1 速度场从图 9,Y=1.4m 洁净室立面速度场可以看出,乱流洁净室的气流流动方向呈现出严重的不一致性,在送风口的下方向下流动,并对其两侧的气流起到诱导作用,在工作台和人员的上方,由于受到热辐射和诱导的双重作用,产生与送风气流相逆的流向,向上运动,并形成涡流区。在送、回风口的区域的气流速度值最高。对比图 10 和图 11,Z=0.8m 和 Z=1.3m 水平平面的速度场矢量图可以看出,在水平平面上,气流的基本流向是向回风口流动,不存在反向流动的气流。靠近回风口的区域风速较大,气流能较好地从回风口排出。所以在乱流洁净室的工程应用中,应尽量将工作区域布置在靠近回风口一侧。在 Z=1.3m平面速度值大于 Z=0.8m 平面速度值。2.2.2 污染物浓度场图 12 为洁净室立面污染物浓度场云图,污染物在尘源位置浓度最高,然后向上、向回风口区域扩散,污染物扩散的方向与图 10 的气流运动方向一致。图 13 和图 14 为不同高度水平面的污染物浓度场云图,污染物整体是向着回风口的方向流动,与气流的流动方向一致。在靠近回风口区域的尘源污染物扩散的范围大于上风区域的尘源。在高水平面上的污染物扩散范围大于低水平面处,且污染物平均浓度值偏高。3 结果分析对比 50 次/h 换气次数的辐流洁净室和 60 次/h换气次数的乱流洁净室的速度场矢量图和污染物浓度场云图,可以看出乱流洁净室的气流流动方向在垂直面上较为混乱,存在着较多的涡流区,污染物的扩散范围更大,主要是靠稀释作用达到房间内洁净度的要求。辐流洁净室比乱流洁净室气流流动方向更具有同向性,指向回风口,污染物随着气流的方向流动,尤其在工作区,污染物浓度更低,有利于生产环境的结净度要求。为了量化辐流和乱流洁净室的气流组织和污染物净化效果,选取数据监测点,进行速度和污染物浓度的对比分析。在涡流区内,接近尘源的地方具有很高的含尘浓度,而洁净度的要求主要应用在工作区。所以通过测点准确预测工作区域的平均含尘浓度,更有意义。规范要求:洁净度的采样点个数应为:L=A0.5,采样点应均匀分布于洁净区内,并应位于工作区的高度。根据上述要求以及洁净室内人员和设施的布置情况,本文在 Z=0.8m 和 Z=1.3m 两个平面各选取 6 个监测点进行速度和污染物浓度的分析。其中点 1-6 位于 Z=0.8m 平面,点 7-12 位于Z=1.3m 平面。3.1 速度值对比与分析从图 15 可以看出:无论是在 Z=0.8m 平面还是Z=1.3m 平面,辐流洁净室测点的速度均匀性均优于乱流洁净室。在 Z=0.8m 平面上,辐流洁净室的平均速度为 0.03 m/s 大于乱流洁净室的平均速度值 0.02m/s,提高了 33%。在 Z=1.3m 平面上,两者的平均速度值相同。3.2 污染物浓度场对比从图 16 可以看出:除了 10 点外,辐流洁净室在各测点的浓度均低于乱流洁净室。在 Z=0.8m 平面上,辐流洁净室的平均浓度为0.0005PPMV,乱流洁净室为 0.0006 PPMV,降低了 20%;在 Z=1.3m 平面上,辐流洁净室的平均浓度为 0.0004PPMV,乱流洁净室为 0.0005PPMV,降低了 25%;两个断面的总平均浓度分别为 0.0005 PPMV 和 0.0006 PPMV,总体降低了 20%。可见即使在小于 10 次/h 的换气次数下,辐流洁净室比乱流洁净室在工作区表现出更好的气流组织特性和洁净度。按照风机的输送能耗与风量成正比估算,则输送能耗降低了 20%。4 结论(1)本文通过数值模拟的方法,对比研究了 50次/h 换气次数的辐流洁净室和 60 次/h 换气次数的乱流洁净室气流组织和污染物浓度分布特性。通过对比速度场矢量图和污染物浓度场云图,乱流洁净室的气流流动方向在垂直面上较为混乱,存在着较多的涡流区,污染物的扩散范围更大。而辐流洁净室气流流动方向更具有同向性,指向回风口,污染物随着气流的方向流动,尤其在工作区,污染物浓度更低,有利于生产环境的结净度要求。(2)通过选取距离地面 0.8m 和 1.3m 不同高度上的数据监测点的污染物浓度量化分析表明,辐流洁净室在监测点的总平均浓度为 0.0005 PPMV 低于乱流洁净室的 0.0006 PPMV,总浓度降低了 20%。(3)在小于 10 次/h 的换气次数下,辐流洁净室比乱流洁净室在工作区表现出更好的气流组织特性和洁净度。按照风机的输送能耗与风量成正比,则估算输送能耗降低了 20%。
 
随着经济的发展,生活品味的提高,越来越多的人开始注重健康和环保。空气质量检测仪是一款能实时检测甲醛,PM2.5,TVOC和温湿度的产品,小巧精致,方便携带。通过其内部的原装进口传感器,能准确测量出污染物浓度,并计算出空气质量指数AQI,当浓度超标时报警。
 
近年来人们对空气质量检测仪,尤其是带数字显示的检测仪关注度比较高。主要原因是这些年人们的知识水平不断提高、社会科普工作不断完善、人们健康意识逐渐增强。同时也经常看到或听到有关室内居室空气污染给人带来的种种伤害。而相应检测此前更多的人们把注意力放在了有关室内空气净化的相关设备上,像前些年比较火的空气净化器、活性炭、绿色植物等,但人们并不知道自己所呆的居室污染严重不严重、有没有必要进行空气净化、那些形形色色的空气净化器到底有没有用。
 
所以现在人们又把目光放在了空气检测器上,他们的需求只是想知道这些有害污染物大致含量是多少,严不严重、使用、搬运或储藏方不方便、售价是否能接受、外观是否美观。对精度要求不高,也不需要相关的环境证明。空气质量检测仪原理为检测前端甲醛传感器,PM2.5传感器,TVOC传感器以及温湿度传感器的信号,通过运算放大器将传感器的微弱信号放大,并通过滤波电路去除噪声干扰,然后通过AD采集,并采用32位高精度CPU处理计算,然后转化为污染物浓度值,并在液晶屏上加以显示。
 

空气质量检测仪操作流程

 
1、用砂片稍用力将检测管两端各划一圈割印。
 
2、用硅胶管套套住检测管上的箭头所指一端,沿切割印掰断,用同样方法掰断另一端。
 
3、用硅胶管套套住检测管上的箭头所指一端(防止漏气),插入所要检测标注的气体通道口上(稍用力插紧)。注意方向性,箭头方向代表气体流过方向。
 
4、将所需检测的若干项的检测管,按以上方法均插好之后,接通空气检测仪电源,打开总电源开关,总电源指示灯亮,查看电压表是还正常。
 
5、调节所需检测气体对应的时间控制器,使其符合技术指标。打开所要检测项的开关,对应指示灯亮,所对应的检测项即开始检测。
 
6、检测结束,切断电源,一手轻按气体通道口上的蓝色套圈,另一手拔出检测管。
 
7、手持检测管箭头朝下,并垂直于地面放在与目光基本不平的位置,观察管上颜色变化所指刻度,既为被检测气体的浓度。室内空气质量检测仪序号及其厂家。
 

空气质量检测仪操作步骤

 
1、开机
 
空气检测仪上电将自动开机,采用USB电源线供电(建议使用带CCC标志的5V 1A 电源适配器)。首次使用时,甲醛传感器需要稳定一段时间,请耐心等待至数值稳定后再使用。
 
2、联网配置
 
确认手机连接Wi-Fi,手机和设备置于同一个路由器覆盖范围。打开App选择设备配置Wi-Fi。
 
3、读取数据
 
系统默认每五分钟刷新数据,短按检测底座按键或下滑App屏幕可主动触发刷新(传感器需要短暂稳定时间,建议数据稳定后阅读)。
 
4、关闭屏幕
 
长按测试空气检测仪底座按键3秒关闭屏幕,短按检测底座按键点亮屏幕。
 
5、细节设计
 
检测盒子的背面和右侧面各有一个进风口,背面是测PM2.5的,右侧面是测甲醛的,流体力学设计风道,甲醛、PM2.5独立检测互不干扰。底座同样有两个进风口,在背面和左侧面,保证测量温湿度更精准。
 
底座和检测盒子背面均有一个充电口,底座无内置电池,需通过充电口连接电源使用,检测盒子配有1000mAH大容量电池,可充电后独立使用,续航持久,盒子的反供电设计更可在无电源情况下给底座短暂供电,设计很周到。
 
6、屏幕提示
 
根据当前检测到的空气质量参数数据,通过显示图标直观提供合理的空气改善建议,提醒是否可以开窗,是应该加湿还是除湿,若图标变为红色则表示空气质量差,应当进行净化空气措施。
 
7、设置操作
 
如果想看到更新的数值,可以通过按底座上面的按钮,或者下拉APP,都会触发传感器检测和上传数值。
 

空气质量检测仪使用方法

 
第1步:确定仪器状况
 
要先确认下拿到的空气质量监测仪是否能正常运行。可先行通电查看仪器的状况。一些自带显示功能的空气质量监测仪在通电后5~10分钟后就可以看到相关的测试数据。并查看下各参数是否都有对应的数据显示。一些不带显示功能的空气质量监测仪也会有通电指示灯亮起,而这类仪器就需要登录数据平台后才能确定仪器运行状况。
 
第二步:配网
 
配网就是将室内空气质量监测仪与场所内路由器连接的过程。因为大部分空气质量监测仪都是带有数据平台或手机APP可以查看的,所以仪器输出数据的前提就是要连接到网络。这时候就要拿到仪器说明书,根据说明书上的配网步骤进行配网。当然,现在有些仪器包装内说明书内容并不涵盖如何配网,这就要在仪器机身上,或包装上找一找有没有二维码。经过扫码后,可能就会找到配网方式。这里通过有线网络或者无线网络的配网方式都可以,目的就是将仪器连接到网上即可。
 
第三步:查看数据
 
当配网成功后,少部分空气质量监测仪的数据就可以通过网页或者手机APP查看到了。但大部分的空气质量监测仪厂商为了数据私密性和安全性问题,会在这一步骤设置一道账号及密码的关卡。也就是只有拥有账号及密码登录软件后才能看到自己设备的监测数据。而这里的账号及密码就可能需要问产品客服或技术索要。
 
第四步:核对参数
 
登录软件或者APP平台后就可以在其中查看到该台仪器的数据了。先查看下各参数是否都有对应数据,如果某些参数没有数据,就可能是因为仪器内的数据输出问题或是气体传感器问题,这就需要咨询厂家或产品客服看如何来排除故障。一般空气质量监测仪会包含PM2.5、TVOC、CO2、甲醛等基础数据。而随着客户需求的升级PM10、臭氧(O3)、氮氧化物(NOx)、一氧化碳(CO)、氧气(O2)、噪声、光照、温度、湿度、气压等参数也能选配,当然这属于需求购买层面的选择。
 
第五步:选择位置
 
看下空气质量监测仪包装盒内有没有背板或者支架。有背板就可以进行挂壁或吊顶的安装,而有支架则可摆放在桌面,当然这都是随个人喜好。如果室内人流量比较大,或者有调皮的孩童,还是建议挂壁或吊顶的安装方式。避免更多人去摆弄空气质量监测仪,因为仪器内置精密的传感器,经常碰撞可能会导致监测参数不准确,甚至损坏。
 

市场上存在的普遍检测方法

 
1、质监局、环保局有大型单位,测试结果精确到零点几倍,测量相对精确,但费用高,30平的收费就在400元左右.
 
2、个人空气治理公司。小型检测仪器,费用50—200元,现场检测,时时出数据。
 
3、自购家用甲醛监测仪,24小时实时监控室内的甲醛浓度,超标自动报警,可随时查看。
 
4、甲醛自测盒,从网上购买,按照使用说明自己动手进行检测,特点就是省钱、方便,但相对存在的误差也高于其它三类检测标准。
 

赛纳威空气质量检测仪产品介绍

 
深圳市赛纳威环境科技有限司成立于2005年,是一家专业从事环境检测仪器及环境监测治理系统开发和制造的高科技企业,公司早期开发的净化车间专用尘埃粒子计数器系列产品和气体检测仪器系列产品已经在国内外市场上占据了较高的市场份额,赛纳威遵循"求实创新,用户至上"的企业宗旨,聚焦和满足客户的需求,提供极具竞争力的优质空气检测及治理产品和售后服务,帮助用户实现"高效便捷”的工作目标,努力为客户创造长期价值。
 
CW-HAT200&CW-HAT200S高精度手持式PM2.5检测仪是专用于测量空气中PM2.5(可入肺颗粒物)及PM10(可吸入颗粒物)数值的专用检测仪器。 在应用高灵敏度微型激光传感器技术基础上,自主开发出的集空气动力学、数字信号处理、光机电一体化的高科技产品;该仪器具有测试精度高、性能稳定、多功能性强、操作简单方便的特点,可广泛适用于公共场所环境及大气环境的测定 ,还可用于空气净化器净化效率的评价分析。
 
高精度手持式PM2.5检测仪
 
CW-76S工地扬尘传感器(粉尘检测仪)是深圳市赛纳威环境科技有限公司自主研发的集空气动力学、数字信号处理、光电一体化的高科技产品,主要应用于检测大气中的粉尘质量浓度(PM值),适用于建筑工地、城市网格化监测、移动监测等领域和场合,是大气质量检测系统的核心模块。
 
工地扬尘传感器
 
CW-HPC200(A)是专门用于检验空气净化器净化效率的检测仪器。该仪器能同时对两个粒径档(0.3μm,2.5μm)进行检测分析,并对进、出气口两端数据实时监测对比分析,并由LCD显示屏直接显示出来。其测试精度高,性能稳定,数据直读,操作简单方便。
 
空气净化器净化效率检测仪
 
HAL-HFX105手持甲醛检测仪是深圳市赛纳威环境科技有限公司开发和制造的一种新型甲醛直读式定量测定分析仪器,它可广泛应用于家具、地板、壁纸、涂料、园艺、室内装饰与整修、染料、制纸、制药、医疗、食品、防腐、消毒、化肥、树脂、粘合剂和农药、原料、样品、工艺过程及养殖厂、垃圾处理厂、生产车间和生活场所中甲醛的定量测定。仪器由先进的电化学传感器,采样泵和微处理器构成,可直接实时测量和在带背光的液晶屏上显示被测样品中甲醛的百分比或ppm浓度含量。自带外置高精度数字式温湿度传感器用于补偿和提高测试精度,数据可通过USB下载和连续实时环境检测和分析。
 
手持甲醛检测仪
 
HAL-HC0201手持直读式二氧化碳(CO2)测试仪是采用国外知名传感器生产企业,专业生产的新型双光束双波长非红外光红外DNIR传感器的分析仪器。使得仪器具有分辨率高并在检测过程中更加准确,长期稳定,线性好和易于标准标定。
 
手持直读式二氧化碳(CO2)测试仪
 
直读式数字二氧化碳分析仪由非分光红外NDIR传感器,采样泵和微处理器构成,能准确地对公共场所及室内外的CO2浓度进行快速定量测定。可进行连续实时环境监测和分析,LED液晶屏上显示被测环境中CO2的浓度含量;自带外置高精度数字式温湿度传感器,可显示被测定环境条件,并用于补偿提高测试精度;数据可通过USB下载。它可广泛应用于地下车库、农业种植、环保、卫生防疫系统以及大气污染和温室效应检测。